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A method of  nondestructive measurement of  the thermophysical properties of  massive materials is 
proposed in which the heat leakage of  the heater to the surrounding medium is accounted for and the 
distorting influence of  its heat capacity on the temperature field of the sample is eliminated. 

Recently methods of nondestructive testing of the thermal conductivity and thermal diffusivity of materials have 
become widely applied in thermophysical measurements. Their specific feature lies in the fact that there is no need to 

incorporate a probe into the tested material, and the sample may be of arbitrary form but must have one of its sides 
smooth. Determination of thermophysical properties is reduced to supply of a constant heat flux via a spot of the contact 
in the form of a circle of definite diameter to the surface of a body semiinfinite in thermal aspect and measurement of the 
temperature variation in time. 

Many variants of the above method have been proposed. The majority of them are based on the principle of 
absence of heat leakage into the surrounding medium [1-8], whose implementation requires utilization of additional 

technical means for automatic temperature control of the medium. In [9] a method is proposed excluding heat leakage into 
the surrounding medium since the heat source is positioned at the joint of two similar semiinfinite bodies. However, the 

identity of the investigated samples substantially restricts the sphere of applicability of the method. For instance, it cannot 
be used for field measurements of heat coefficients of massifs of soils and rocks or other materials. In this respect, the 
method proposed by G. M. Serykh and B. A. Gergesov [10] is of interest. It employs a system of two composite bodies. 

The thermophysical properties of a material are measured in the initial heating region (Fo < 0.1), which ensures a short 

time of measurements, which is undoubtedly a merit of the method. At the same time in the initial heating regime the 
distorting influence of the heat capacity of the heater on the temperature field of the material may manifest itself, which 

causes additional errors in the experiment. Manufacture of a low-response heater presents technological difficulties. In [11] 
the heat capacity of the heater is accounted for on the surface of one half-space. 

The distortions of the temperature field of a sample due to the heat capacity of the heater may be avoided by 

choosing a final stage of heating where the regime of the linear dependence of temperature on the parameter 1A/-~r reaches 
the steady state in the temperature field [7, 8]. In the present article this principle is extended to a system composed of two 
semiinfinite bodies, which allows a decrease of the experimental error at the expense of elimination of the distorting 

influence of the heat capacity of the heater on the temperature field of the sample and an account of heat leakage of the 
heater into the surrounding medium via the second body with known heat coefficients. As the latter a heat-insulation layer 

may be chosen, owing to which the experimental setup becomes self-contained and may be used for field measurements of 

the thermophysical properties of rocks or other materials. 

The essence of the proposed material is as follows. A flat heat source having constant heating power and the 
configuration of a circle with radius R acts between two semiinfinite bodies with different thermophysical properties having 

an ideal thermal contact. Thus, a heat flux with the constant power q = const is produced on the part of the contact with 

radius R, while on the remaining part of the contact the flux is absent. 
In the plane z = 0 heat transfer between bodies is negligible and the heat fluxes q~ and qz are completely .directed 

into each body from the heat source but depend on the coordinate r. The sum of these fluxes gives the heat flux produced 

by the heat source q, i.e., ql + q2 = q. 
At the initial moment r = 0 the constant temperature T O is maintained throughout the whole volume of the bodies. 

Institute of Permafrost Science, Siberian Division, Russian Academy of Sciences, Yakutsk. Translated from 
Inzhenerno-Fizicheskii Zhurnal, Vol. 64, No. 2, pp. 221-227, February, 1993. Original article submitted October 24, 
1991. 

1062-0125/93/6402-0175512.50 �9 Plenum Publishing Corporation 175 



Then we may write the following system of differential equations of heat conduction: 

OTt O2T1 . 1 c3T1 + O*Tt "l 

OT~ / O"T~ 1 c)T~ 02T2 ] 
- l - f f F  + - -  + 

r Or Oz ~ ,! 

(1) 

where a~ and a2 are the thermal diffusivities of the first and second bodies, with the following boundary conditions: 
a t 0 < r _ R  

OT1 (r, O, x) q l  m 

Oz ~,x 

OT~.(r, O, x) q.. . 

Oz ~,2 

ql 4- q2 = q, 

a t r>_  R 

OTt (r, 0, 3) OT~ (r, O, "~) 
= . =  O; 

dr Or 

T l ( r ,  z, 0 ) =  T2(r, z, 0 ) =  To; 

Tl ( r ,  oo, z) = Tz(z ,  oo, ,c) = To; (2) 

OT x (r, oo, 3) _ OT2 (r, oo, 3) _= 0; 
Or c)z 

Tx (r, O, 3 ) =  T2(r,  O, ~), 

where X1 and X2 are the thermal conductivities of the first and second bodies, respectively�9 
The solution of this problem for the excess mean-integrated temperature 0~ of the heating zone contact in the form 

of a circle after some elapse of time is as follows: 

~ = 8 qR qR 2 1 

33 ~.1 + L2 2 ],/~ (~.~ - t /~  4- k2 ] / ~ )  -I/~- ' (3) 

where 0, = "s - To; q'. is the mean-integrated temperature of the contact spot of heating up. 
Relation (3) allows determination of the thermal conductivity and thermal diffusivity by the excess mean-integrated 

temperature of the heating contact spot Or(l/Z r), then the latter will approach a linear dependence in the course of time 
(Fig. 1): here intersection of the straight line with the ordinate axis (1/Z r = 0) gives the value of the temperature 
difference under steady-state heating conditions (r --. oo), which may be used to calculate the thermal conductivity of the 
sample 

= 8qR 
3:~ ~'c~ L,,_ (4) 

where e~t = q'~t - To is the steady-state difference between the mean-integrated temperature of the heat source and the 
initial temperature of the sample. 

The thermal diffusivity may be determined either by the intersection of the straight dependence Or(l~/~) with the 
abscissa 14~'1 or by its tangent ~o 

3 V R(1 1 z,1/Y  ]5, (5) 
ax = 16 -I/~ Lx 

2 -1/~3,1 tg qD Xt (6) 

176 



N. 
~ p  

%',~176 
% 

�9 i 
~ , t . ~  

�9 �9 
r ( '-: . 2_  

7 

Fig. 1 

5 

1 1 2 "  
j l  

Fig. 2 
Fig. 1. Plot of the excess mean-integrated temperature of the heater #~ (K) vs Ix/~ 
(sec- v2). 

Fig. 2. Block diagram of the flat probe. 

A block diagram of the probe is shown in Fig. 2. The probe consists of fiat heating element 1, base-heat insulator 
2, and copper-constantan differential thermocouple 3. The heating element is assembled on a copper foil in the form of a 

circle with a definite radius. To its inner surface a 0.1-mm diameter nichrome heating spiral, uniformly arranged over the 

whole plate surface, is glued. The "hot" junction of the thermocouple is soldered to the foil. Its "cold" junction is placed 

at a sufficient distance in heat-insulating porous rubber with X ~ 0.05 W/(m.K) and al ~ 2.22.10 -7 mZ/sec. During the 

experiment the temperature of the "cold" junction must not change by more than 0.005 K. The copper body of the heater 

allows measurement of the practically averaged temperature of the contact heating zone by the "hot" junction. For the sake 
of convenience of utilization the heater is glued to the heat-insulation surface. Tight thermal contact of sample 4 with the 
heat insulation is achieved by greasing the contact surface with technical vaseline and its compression by cover 5. All the 

units are placed in body 6 with joint 7. 
Now we estimate the distorting influence of the heater heat capacity on the temperature field of the system of 

bodies. For this, we start with the heat balance equation of the heater 

cm h dTh 
qh + q~ + q2, (7) 

Sh dx 

where Th, cmh, Sh, and q~ are the temperature, heat capacity, surface area, and heat flux of the heater. 
In calculations, use is made of the heat flux produced by the heater, which is taken as theoretical (q~, It is 

necessary that the real heat flux to the system of bodies qreal = ql + �9 be equal to % with the permissible error e c. Their 

inequality is conditioned by the heat capacity effect of the heater. Thus we have 

e c = ( 1 -  q:re_.__.~ ) =  cmh dTh (8) 
q~ qth Sh dx 

The derivative dTh/dr is found from formula (3) at z _> rj~ (here r~m is the time of onset of the linear dependence of the 

temperature on lx/u with the permissible error c1~. Then taking account of the relations S~ = 7rR 2, cm h = C.hVh = 

C~hTrRZl (here R and l are the radius and the thickness of the heater) we may write 

~ = A ~  R21 , (9) 
,(3/2 

where 

A = 
c~ h 

4 -l/~,la~/2 [1 § (~-,-I~,0 (a~la~) ~/21 

is a constant dependent on the thermophysical properties of the heater and the system of semiinfinite bodies. 
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Fig. 3. Function f vs r, nlr. 

TABLE 1. Thermal Conductivity Determined by the Methods of Flat and Cylindrical Probes 

Material Volume weight 
of skeleton, 

kg/m 3 

Weight moisture 
contents, % 

Thermal conductivity, W/(m. K) 

probe ~ cylindrical probe flat 
.t 

Frozen sand 1670 20.2 2.96 3.09 

Argillaceous marl 2160 10.2 2.14 2.13 

Ice 922 - 2.24 2.30 

Thus, the distorting effect of the heat capacity of the heater Ec depends on the heater dimensions and time. As l --, 

0, e~ ---, 0. For the given dimensions of the heater the parameter E~ rapidly decreases with increase of time since it depends 

on time to a greater degree than the temperature itself. 

From (9) we may find the time of disappearance of the distorting effect of the heat capacity of the heater on 

temperature field of the sample with the permissible error e~: 

a ; ,  AR2l 
" r ~  ~ / ( e - - ~ - - )  " (10) 

As a consequence, we consider the following cases. 

1. Xi/X I --, O, i.e., ideal heat insulation. Here we have 

A 1  ~ L  

2. Xl = X2 and a~ = a2, i.e., pair samples. Then 

cv h 
- -  [ : 9  

4 -I/rt~lal'- 
(11) 

A ~ -  Cvh -- A1 (12) 
8 -l/~;qal/2 2 

3. )'1 ;~ L2 and a 1 ~ a z. The constant A3 is determined by formula (9). In this case we obtain that rc2 < re3 < re1. 

Thus, rc undergoes a twofold change between the two extreme cases. In the case of ideal heat insulation of the 

heater we have the maximum time of cessation of the heat capacity effect of the heater on the temperature field of the 

system rcmax and in estimations it should be used as the worst experimental conditions. Depending on the heater heat 

capacity this time may be longer or shorter than that of the onset of the linear section rim of the temperature dependence on 

the parameter lwr~.lThe quantity % has not been evaluated above since the solution (3) is derived for the already attained 

linear dependence T --, f(lx/7). Proceeding from the worst experimental conditions, let us consider the case of ideal heat 
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insulation of the heater in the form of a circle with radius R on the surface of semiinfinite body 1. In this case the excess 
heater temperature at its center at R/2(alr)1/2 < 1 is described by the equation [7] 

2 -I/~--~x :24atx 480a] x2 ", " 
= - -  . .  ( 1 3 )  

In order to establish the linear dependence of vq~ on the parameter lx/7, it is necessary for the expression in round 
brackets in (13) not to exceed 1 - %. 

We assume e~m = 0.04. Then R:/a~r < 1. Hence the time of attaining the linear dependence is r~ >_ R2/a~. 
In subsequent calculations the derivative dTh/dr in (7) is found from (13): 

dTh qth R ~ ( 
d x 4 -I/ ~-~1~1~ ~ / ~- 1 

Taking into account % __k R2/ax, we finally arrive at 

~c 

where B = ( 1 ~ ) .  C~JC~I is a new constant; 

R=~ R~ ) (14) 
8a(~ ~ 96a~'~2 "'" ' 

Bl Tlin 1 ' f ,,--7-~ (15) R 

Since formula (13) is valid at R/2(aiz) 1/2 < 1, the function f ( rJz )  is to be calculated by (15) within the limit r~/r <_ 4 
(Fig. 3). As l --, 0 and 7 --, oo, ec --" 0. For the given heater dimensions (I/R ~ 0) the quantity ec is determined by the 

parameter r~Jr. In the initial heating region (r~/r > 1) the distortion is at its maximum. For instance, at Fo _< 0.1, 

which is recommended in [10] and corresponds to r~/r >_ 10, the value of f is less than 15. In the linear region of 

temperature variation with the parameter 1,,/7 the value of f does not exceed 0.9. 

Now we examine e~ with reference to concrete examples. 

Let the heater body be manufactured from a i-ram-thick copper sheet and the heater diameter be 30 mm. Then the 

volume heat capacity of the heater is equal to 3738 kJ/(m ~. K). As the tested material, we consider a soil mass. Its volume 

heat capacity in dry and moist, thawed, frozen states varies from 820 to 4200 kJ/(m3.K). Rocks, ice, concrete and, 

practically, all the materials fall within these limits. Here we have C,h/C,~ = 1-4. Then B = 0.14-0.56 and l/R = 0.067. 

In this case we have ec = (0.009-0.037)f(%/r). Of these bounds, we choose the worst one, i.e., ecr~ = O.037f(rJr). For 

different r J r  (0.3; 0.5; 0.8; 1.0; 2.0; 3.0, and 4.0) e . . . .  varies as follows: 0.007; 0.013; 0.025; 0.035; 0.082; 0.137, and 

0.200. Hence it is obvious that for the accepted heater dimensions in the linear region of the dependence T -0 f(lx/7) the 

distorting effect of the heater does not exceed 3.5%. For rlJr <- 10 (Fo < 0.1) the value of e~ is less than 50%. 

Thus, the choice of the steady-state regime of the linear temperature dependence on the parameter 1,,/7 in measure- 

ments of therrnophysical properties of materials by the proposed method allows one to substantially decrease the experi- 

mental errors associated with the distorting effect of the heat capacity of the heater on the temperature field of the tested 

sample. 
The error in determination of thermophysical characteristics by the proposed method is evaluated by comparison 

with the results of measurements of these characteristics by the method of a cylindrical probe with a constant heating 

power (the probe-needle). The measurements performed in underground chamber at a constant natural temperature of 

269.8 K for masses of frozen sand, ice and argillaceous marl. The results obtained are listed in Table 1. 

As seen from the table, the thermal conductivity data obtained by the methods of flat and cylindrical probes agree 

within +_5-6%. For thermal diffusivity, deviations of the measured data from tabular data (for ice a = 1.16- 10 -6 m2]sec) 

attain 13-15 %. 
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NOTATION 

r, z, current coordinates; r, time; T,, temperature of the semiinfinite body at any moment of time; To, initial 
temperature of the body; t9 = T, - T o, excess temperature at the heater center; 0~ = "i~ - To, mean-integrated tempera- 
ture of the heater; X, thermal conductivity; a, thermal diffusivity; C~, volume heat capacity; c, specific heat capacity; q, 
heat flux; Sh, heater area; R, its radius; e, permissible error; 9, slope of the linear temperature dependence on the parame- 
ter 14u indices il, 2, h, real, th, c, lin denote the tested sample, reference body, heater, real and theoretical heat flux, 
heat capacity of the heater and linear law of temperature variation with the parameter lx/~. 
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